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ABSTRACT 

Flashboard Plasma Cathodes (FBPCs) are potential rugged electron sources for 

generating high-current beams needed for future High Power Microwave 

Weapons. In FBPCs, dielectric material is in contact with electrodes in a vacuum. 

Plasma is generated by a surface flashover discharge on the surface of the 

dielectric between the electrodes and an electron beam is extracted from the 

plasma by applying an electric field between the anode and cathode. While 

FBPCs have been successfully used in a number of applications, the widespread 

adoption of this technology has been limited by concerns over beam quality. The 

goals of this thesis are to design a test stand in order to measure FBPC 

properties that affect beam quality and to enable experiments that will provide a 

better understanding of the effects of different parameters such as flashboard 

design, pulser type and plasma properties on the quality of electron beams 

extracted from the plasma. 
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I. INTRODUCTION 

A. PURPOSE 

There is an increasing interest in directed energy weapons based on high 

power microwave (HPM) technologies. In these systems, electrical energy is 

converted into microwaves, which carry energy to the target. Potential 

applications include counter-improvised explosive devices (IEDs) [1], [2], active 

denial systems [2], and counter-electronics [1], [3]. Although solid-state systems 

are advancing rapidly, HPM systems still generally rely on electron beam based 

sources. In general, these sources use an interaction between the electron beam 

and external circuits and boundaries to bunch the beam at the operating 

wavelength of the source. When the wavelength is very short, the beam quality 

must be very good in order to maximize the interaction between the beam and 

the circuit without losing beam inside the source. However, for longer wavelength 

sources, the beam quality is less important, and requirements on quality can be 

relaxed in exchange for high beam current. This suggests the use of flashboard 

plasma cathodes (FBPCs).  

A FBPC consists of a dielectric material in contact with electrodes in a 

vacuum. Plasma is generated by a surface flashover discharge on the surface of 

the dielectric between the electrodes and an electron beam is extracted from the 

plasma by applying an electric field between the anode and the cathode. FBPCs 

are simple, rugged, inexpensive, and have the potential to generate  

kilo-ampere-class beams [4]. However, these cathodes have not been widely 

adopted because of the low beam quality typically associated with them. In 

addition, expansion of the plasma limits the pulse length of the extracted current 

from the plasma and can further degrade the beam quality. Consequently, this 

research is aiming to test FBPCs to understand how to control the plasma 

properties that affect electron beam quality. This requires construction of a test 

stand, which is the focus of this thesis.  
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B. BACKGROUND OF HIGH POWER MICROWAVE WEAPONS 

1.  Technical Details and Applications 

For future military operations, there is an increasing interest in directed 

energy weapons, including HPMWs. The increasing use of electronic devices in 

the military, from communication systems to command and control systems, 

increases the significance of HPMWs in conflicts and threat situations.  

HPMWs are systems capable of producing microwaves ranging in 

frequency from 100 MHz to 300 GHz, and in energy from kilowatts to hundreds of 

megawatts, and then radiating that energy against a wide range of targets [2]. 

This energy can cause electronic upset and lethal or non-lethal damage to 

people and electronic devices by penetrating buildings, vehicles and equipment 

through very small openings [2], [3]. 

Since the middle of the twentieth century, militaries around the world have 

been using electronic devices such as computers, radios, radars, and sonar in 

every size in operations and combat systems. Today, these electronic devices 

rely on semi-conductor devices, such as transistors, microchips, and other 

microelectronic devices, which are highly sensitive to electromagnetic effects. 

For instance, old style vacuum tube-based systems used high voltages and were 

relatively large. This meant that a very large electric field would be necessary to 

upset those systems. Going to semiconductor-based and then microchip-based 

systems meant that these systems could be much smaller, and needed much 

less voltage or energy to accomplish their desired job. However, this also makes 

them much more vulnerable to HPM attacks. Therefore, the increased use of 

electronic hardware in combat systems represents a tradeoff, in which increased 

performance is gained at the expense of increased vulnerability to 

electromagnetic attack. The complexity of electronic systems makes HPMWs 

able to attack machinery without directly attacking people. Therefore, 

unnecessary, massive damage and destruction to materials and human beings 

can be reduced by using HPMWs. It is clear that future battlefields will be full of 

electromagnetic-based weapons in addition to conventional war instruments such 
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as bombs, bullets, tanks and troops, which already play a major role in military 

operations such as defense, anti-terrorism and peace support [1]. 

There are different kinds of military applications of HPMWs, discussed in 

previous research, as follows [1]-[3], [5]-[7]: 

 Barrier of HPM sources to disrupt low-flying airborne sensors, 

missiles and platforms (protection of high value targets) 

 Reusable Unmanned Aerial Vehicle (UAV)-mounted system for 

wide-area disruption 

 Protection of armored vehicles 

 HPM grenades 

 Protection of ships in harbor (HPM barrier around ship) 

 Speedboat pursuit and disabling 

 Barrier of reusable off-board HPM anti-missile systems 

 Suppression of enemy air defense 

 Aircraft self-protection 

 Electronic suppression of communication and security systems 

 Neutralization of explosive traps  

As a result, future military operations are not expected to require mass 

destruction, which carries the potential for extensive loss of human life and for 

violation of human rights. Neutralizing the enemy’s electronic equipment will be 

enough to degrade his ability to fight while reducing the need for massive 

destruction. HPMWs are, in principle, able to meet these expected requirements 

whereas kinetic and high explosive weapons do not [1]. 

2. Requirements of HPMWs  

In order to destroy electronic devices via HPM, it is important to 

concentrate the transmitted energy in a region of the electromagnetic spectrum 

where the devices are vulnerable. The concern is to produce a high enough 

electric field at the target, for a long enough time, to achieve the intended change 

to it. HPM energy can couple into targeted electronic devices through their 
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antennas, power cables, damaged shielded parts, telephone lines and even 

holes on shielding cases [3], [5], [6]. To accomplish this, HPMWs need enough 

peak power to overcome the one-way transit losses (diffraction, absorption, small 

apertures for entry into target, absorption/protection in target) and still burn out 

the target hardware. 

The overall system needs a power supply, a microwave source, and an 

antenna. The power source may be batteries or generators, and may include 

pulsed power stages if needed to produce high-power bursts over short periods. 

Pulsed power systems will not normally be used with continuous wave systems. 

Many varieties of microwave sources exist, including magnetron oscillators, 

klystrons, virtual-cathode oscillators, gyrotrons, free-electron lasers, and  

beam-plasma generators; all of these convert the kinetic energy of an electron 

beam into the electromagnetic energy of a microwave beam and generate 

focused, high-frequency electromagnetic waves [3], [6]. At the end, an antenna 

points and shoots the HPMs to the target. The antenna has two major functions: 

 Impedance match between microwave source and free space 

 Gain and directivity (sending the microwaves in a particular 

direction) 

The basic parts of an electron-beam driven HPM system are shown in 

Figure 1. 

 

Figure 1. Basic components of a typical electron beam driven HPM system 
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It is clear in Figure 1 that the critical part of HPMWs is the microwave 

source, which plays the major role in the system by generating microwaves from 

the electron beam.  

HPM sources can be classified as generators of two major types of 

microwaves: continuous waves and pulsed waves. FBPCs are not suitable for 

continuous waves because they are an inherently pulsed device, limited by 

plasma expansion across the anode-cathode gap and the consequent shorting 

out of the accelerating field [8]. On the other hand, FBPCs may be suitable for 

pulsed waves since they use pulsed-power technologies. By generating 

continuous waves, average powers of tens of kilowatts to megawatts might be 

achieved [9]. However, peak powers from megawatts to gigawatts can be 

achieved by using pulsed waves in existing high-power laboratory sources [6].  

For several reasons, pulsed weapons are preferable to continuous 

weapons. It is known that short bursts are more likely than continuous waves to 

damage electronic hardware and many high power sources can be operated only 

in the pulsed mode [6]. In addition, pulsed waves would make it harder for the 

enemy to locate a microwave weapon and take counter measures [6]. Another 

reason for pulsed systems is to mitigate adverse effects at the antenna: the air 

around the antenna might turn into plasma because of the high power, which 

would interfere with the microwave propagation [3]. This effect also sets a 

constraint on the design of the antenna, even for short pulse systems. For 

instance, if the HPM propagation is focused too tightly, the peak electric field may 

be high enough to ionize the air. 

The need for pulsed, high-current electron beams to generate intense 

microwaves motivates the desire for improved electron sources. This includes 

FBPCs, which might be a better approach for HPMWs than other cathodes 

currently in use. 

                   



 6

C. BACKGROUND OF CATHODES AND THEIR LIMITATIONS 

Cathodes are devices used for producing free electrons. By the early 

1900s, it was known that electrons are bound to matter. The valence electrons in 

metals are “free”—they are able to move easily from atom to atom. However, 

they are not able to leave the surface of the material easily and escape into 

vacuum. Several electron emission methods are known and these methods 

determine the type of cathodes available today. Some cathode types have been 

in use for many years and some are still under investigation. The types of 

cathodes in widespread use can be grouped into four different categories 

according to their emission methods and their limitations for possible use in HPM 

systems.   

1. Thermionic Cathodes 

This type of cathode is based on thermionic emission, in which an 

application of heat allows electrons to gain enough energy to escape from the 

material [10]. Figure 2 shows the basic elements of a thermionic cathode. 

 

 

Figure 2. Illustration of a thermionic cathode in an electron gun (From [11]) 

 For many applications requiring high-current pulsed electron sources, 

thermionic cathodes cannot produce sufficient current density. In addition to this, 

some thermal stress problems may occur due to the heater element. 

Temperature variation across the cathode surface leading to variation in the 

emission current density is another related problem. Some materials used in the 
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cathode surface to achieve high temperature, low work function surfaces may 

cause contamination of the electron gun.  

 Another limitation of thermionic cathodes is that they are inherently CW 

electron sources. The thermal mass of the cathode prevents its temperature from 

being pulsed rapidly. So, emission must be gated by applying pulsed electric 

fields, typically by using grids. These complicate pulsed operation, degrade beam 

quality, and may intercept the beam. 

2. Photocathodes 

The principle of photocathode operation depends on the photoelectric 

effect, which consists of incident light shining on the material and transferring 

energy to the electrons [10]. As a result, this energy transfer allows electrons to 

escape from the material. Figure 3 demonstrates the photoemission process.  

 

Figure 3. Photoelectric emission from a cathode surface (After [12])  

Photocathodes are the electron sources of choice for Free Electron Lasers 

(FELs), but are not suitable for future, very high current HPM systems, because 

the laser required to drive very high currents would be too expensive [13].  

3. Secondary Emission  

The main idea behind the secondary emission process is the electron 

bombardment of the cathode material as shown in Figure 4. The electrons in the 
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surface of the cathode material gain energy from the incident high-speed 

electrons or other particles. The secondary electrons are liberated from the 

surface.  

 

Figure 4. Secondary emission (From [14]) 

This emission type is not usually used as an electron source for HPM 

systems because it requires a primary electron current and depends on the 

preparation of the surface of the cathode material, which decreases flexibility and 

increases the system cost. 

4. Field and Explosive Emission (Velvet) Cathodes 

In traditional field emission cathodes, a strong electric field allows the 

valence electrons to escape from the cathode material. This type of cathode 

requires very high electric fields. Figure 5 shows one implementation of a field 

emission cathode.   

 

Figure 5. Basic field emission cathode diagram (From [15])      
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In explosive electron emission cathodes, electric fields do not necessarily 

need to be as high as for simple field emission. Explosive electron emission 

usually implies a source such as a velvet cathode. Velvet cathodes use arrays of 

fibers as in Figure 6, oriented parallel to the applied electric field. Electrons 

produced by field emission at field enhancement sites strike the fiber, and 

produce secondary electrons. This process generates plasma along the fiber, 

and that plasma can then emit electrons due to the applied field.  

 

Figure 6. Microscopic picture of fibers in parallel structure (From [16]) 

Although many HPM sources use explosive electron emission cathodes 

[17], they are not able to decouple the plasma generation process from the beam 

extraction process because the same electric field that generates the plasma 

also extracts the electron beam from that plasma. Separating these processes 

provides additional flexibility in controlling the system and is one of the main 

advantages of FBPCs.   

D. OVERVIEW OF A DIFFERENT CONCEPT: “FLASHBOARD PLASMA 
CATHODES” 

1. General Design 

Typical flashboards consist of a large number of contacts in an array on a 

dielectric surface as shown in Figure 7. 



 10

 

Figure 7. Flashboard seen through the anode grid in a Dielectric Wall 
Accelerator (From [18]) 

When high voltage is applied across the electrodes, there will be a 

discharge across the gap between these electrodes. This discharge causes a 

surface flashover, which generates expanding plasma over the flashboard. 

 Flashboards have been widely used in many experiments in different 

laboratories. They have been used to generate plasmas as the basis of plasma 

cathodes [8], [18]-[22], and also in plasma opening switches [23]-[28] and in 

microwave tubes as plasma sources [29]. Plasmas generated by flashboards 

have been investigated and found to consist mostly of protons and carbon ions 

[30].  

When used as the basis for FBPCs, the flashboard is first used to 

generate plasma, and then by using a separate pulsed beam extraction voltage, 

electrons can be extracted from the plasma. By separating the plasma formation 

process from the beam extraction process, the device becomes more flexible 

than other pulsed plasma cathodes such as explosive emission cathodes. 

A basic scheme of an intended physical design of a FBPC is shown in 

Figure 8. 
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Figure 8. FBPC basic scheme and expanding plasma 

Cathodes generating plasma for use as electron sources have been under 

investigation by researchers since the 1970s [8], [18], [31]-[33]. S. Humphries 

and his colleagues at the University of New Mexico worked on the plasma 

cathode to show its potential applications to the generation of pulsed-electron 

beams using a grid-controlled system [31]. J.R. Bayless and his group developed 

a new type of plasma cathode electron gun qualified for pulsed and continuous 

wave operation with electron beam lasers [32]. J.R. Harris and his colleagues at 

Lawrence Livermore National Laboratory developed a short-pulsed dielectric wall 

accelerator using a surface flashover plasma cathode as shown in Figure 7 [18]. 

S.E. Sampayan and S.H. Gurbaxani investigated the properties of vacuum gap 

closure, including plasma initiation, its movement toward the anode, and the 

emission of electrons from the plasma in a plasma cathode, in their research at 

the University of New Mexico [8]. In addition, Ady Hershcovitch at Brookhaven 

National Laboratory also used a plasma cathode as a source of super thermal 

electrons in an electron gun [33]. 
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2. Advantages 

a. Simple Construction 

FBPCs are simple to design and there are no complicated or 

sophisticated parts among their basic components. They operate at room 

temperature so that thermal stress, which can cause problems in a thermionic 

source, is eliminated. In addition, there is no need to cool down the FBPC to very 

low temperatures in order to have it operate efficiently. 

b. Low Sensitivity to Contamination 

While FBPCs are not sensitive to contamination, there is no 

absolute isolation of contamination for them as well. The discharge process can 

actually be aided by surface contamination. The plasma produced by the FBPCs 

is likely to contain many different chemicals. Over time, the flashboard material 

will be eroded away by the discharges, and these can contaminate other parts of 

the system. However, even in conventional thermionic emission sources, work 

function lower in chemical substances coming off the cathode surface can result 

in contamination of the system. 

c. Power Saver 

Some cathodes, such as thermionic cathodes, need a continuous 

supply of power. On the other hand, FBPCs require power only for a few 

microseconds or less, which comprises the discharge period across the 

electrodes. FBPCs use this intermittent power for a very short time so that it 

reduces the average power need for operating the FBPC. 

d. Faster Startup 

FBPCs do not require any warm-up or stand-by period and produce 

plasma immediately after the high voltage discharge occurs on the flashboard. A 

weapon system may be required to become ready to attack a target in as small a 
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period as 3 or 5 seconds. Therefore, the short period of time required for starting 

up a weapon system using a FBPC is a major advantage for this technology. 

e. Low Cost    

Because of the simplicity of the parts used in their design, FBPCs 

are relatively cost-efficient electron sources. The materials chosen to build the 

FBPC are inexpensive and found easily in the market.  

f. Flexible Control 

There are two major processes in creating high current electron 

beam from a plasma cathode: plasma generation and beam generation from the 

plasma. These two processes are combined in other types of pulsed plasma 

cathodes such as explosive electron emission cathodes in which a high electric 

field causes not only the plasma generation from the cathode material but also 

the beam generation. Separating these two functions provides improved control 

and flexibility of the FBPC by allowing independent adjustment of flashover 

voltage, pulse length, extraction voltage, and timing. However, this does require 

multiple power sources (DC or pulsed-power) to generate electric fields 

separately for the plasma formation and electron extraction.      

3. Disadvantages and Mitigation Strategies 

A number of disadvantages to FBPCs have been reported in the literature, 

including possible erosion of the cathode, spatial and temporal variations of the 

plasma emission surface and its motion, plasma gap closure limiting the pulse 

length, current variation during beam generation, and relatively high 

emittance [8], [33], [34]. Some of these disadvantages are inherent in the way 

FBPCs operate and impose constraints on their use, while others may be 

corrected with improved designs. 
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a. Cathode Erosion 

Over time, the flashboard material will be eroded away by repeated 

discharges. This will tend to widen the gaps, increasing the voltage needed to 

initiate a discharge. In addition, the material removed from the flashboard may 

contaminate other parts of the system resulting a reduced lifetime for them as 

well. However, not all experiments with flashboards show major erosion. A 

flashboard tested by J. R. Harris and his colleagues showed only minor 

discoloration in the gap after one-year of intermittent operation totaling 500 shots 

[18]. Minimizing the energy put into the plasma, minimizing the duration of the 

pulse and perhaps alternate material selection may lead to a better design with 

reduced erosion. 

b. Spatial and Temporal Variation 

Spatial and temporal variations in the plasma produced by FBPCs 

were previously reported by Lawrence Livermore National Laboratory. In those 

tests, when the plasma cathode discharged, higher and lower density regions 

were observed in the plasma, leading to high- and low-current regions in the 

beam [35]. The pattern of these variations changed from shot-to-shot, and led to 

increased emittance. Biasing resistors and improved gap geometries may 

mitigate these shot-to-shot variations in the pulse as suggested in Ref. [18]. 

c. Emission Surface Motion 

The complexity of the shape and motion of the plasma surface 

makes calculations difficult. If the surface expansion occurred in a simple planar 

fashion as shown in Figure 8, this would make the theory of plasma movement 

simpler. But in reality, identifying the shape of the emission surface is more 

complicated, making it more difficult to define the actual problem geometry. In 

addition, the shape will change over time, and will affect the initial trajectories of 

the electrons. For instance, if the plasma conductivity is high enough that it can 

be treated like a conductor, electric field lines will be perpendicular to the plasma 

surface as shown in Figure 8. If the plasma shape—its curvature—changes as it 
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expands, the electric field lines will also change depending on that curvature. As 

a result, the electron beam initial conditions as well as beam current will change 

as the plasma moves across the gap. 

d. Plasma Gap Closure 

In general, systems using FBPCs have a gap between the 

flashboard and the anode. After plasma is generated over the flashboard, it will 

expand through the gap. Depending upon on the expansion velocity of the 

generated plasma, plasma will close the gap and make a short circuit between 

the cathode material and the anode in a relatively short time. When the plasma 

occupies the vacuum gap, the electron extraction process will stop.  

Figure 8 demonstrates the plasma expansion through the vacuum 

gap. Earlier researchers carried out experiments investigating how to slow down 

the plasma expansion velocity [8], [24], [31]. The expansion velocity ranges from 

1 to 30 cm/µs [8], [19], [22]-[28], [30], [35].  

e. Emittance Growth 

Emittance is a measure of how tightly the electron beam can be 

focused. Generally, the smaller the wavelength of electromagnetic radiation that 

a system is producing, the more tightly focused the electron beam must be. For 

example, in an x-ray FEL (short wavelengths), the optical mode tends to be small 

so efficient coupling between electron beam and the optical mode requires very 

small emittance. On the other hand, IR FELs (longer wavelengths) tend to have 

larger optical modes so that they do not require as small an emittance as an x-

ray FEL. Since its wavelength is even larger, the emittance can be even bigger 

for a HPM source.    

Since FBPCs have a reputation for high emittance, they may not be 

well suited for FELs. Instead, they are likely to be better suited for pulsed HPM 

sources. In FBPCs, it may be possible to reduce the emittance of the electron 

beams they produce by improving the FBPC design and electron extraction 
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process. The separation of the plasma generation and beam extraction 

processes may help mitigate this problem. 

4. Summary 

FBPCs offer a number of advantages for pulsed HPMWs, such as 

simplicity, low sensitivity to contamination, reduced power consumption, fast 

startup, low cost and flexible control of the plasma and beam generation 

processes. Their disadvantages, including cathode erosion, spatial and temporal 

variation, complexity of emission surface motion, anode-cathode gap closure of 

plasma and high emittance, are less problematic when used for pulsed HPMWs 

than for other applications. Remaining issues to improve and study include 

designing a flashboard, generating plasma and electron beam by using pulsed 

power, controlling the plasma surface emission, measuring the plasma velocity 

and electron extraction voltage, measuring the other plasma properties such as 

plasma temperature and plasma density. Before these issues can be studied, a 

suitable test stand must be constructed to allow for characterization of the 

plasma produced by FBPCs. This will be the focus of the remainder of this thesis. 
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II. BUILDING A TEST STAND 

A. FBPC TEST STAND REQUIREMENTS 

This test stand is expected to provide enough observation of the operation 

of FBPCs so that the research group can begin to do experiments to improve the 

understanding of FBPC operation and optimization.     

This test stand requires a reasonably low pressure relative to atmosphere. 

The FBPC operates under vacuum, and requires low pressures ( < 10-6 Torr) 

which can be achieved with vacuum pumps and pressure gauges which are in 

common use. Another requirement is a pulser, which generates a high voltage 

pulse and transfers the energy from a DC power source to the FBPC in order to 

break down the spark gap and cause a surface flashover, which is the 

mechanism for plasma generation. In order to diagnose the plasma and its 

expansion in vacuum, a Langmuir probe can be used. As a final stage in the test 

stand, different types of diagnostic instruments are required, such as an 

oscilloscope to study waveforms, as well as voltage and current monitors to 

measure power delivered to the FBPC. A diagram of the entire FBPC test stand 

is illustrated in Figure 9.  

 

Figure 9. Block diagram of the FBPC test stand  
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B. VACUUM SYSTEM 

1. General Requirements  

Because FBPCs are intended to produce electron beams in vacuum, both 

the FBPCs and test stand materials must be compatible with vacuum. Vacuum 

pressures of 10-6 Torr or better are required for FBPCs, compared to 10-8 -10-10 

Torr for most accelerator systems.   

2. Turbomolecular Pump 

The choice of which vacuum pump to use in a system depends primarily 

on the size of the experimental test stand volume and the desired base pressure. 

Turbomolecular pumps are one of these pump choices and are one of the better 

options for use in systems that are small in volume such as this FBPC test stand. 

A turbomolecular pump consists of movable and fixed blades in a turbine 

configuration. This turbine rotates very fast, deflecting gas molecules from inlet 

port to the outlet port, thereby creating a pressure gradient and allowing it to 

create or maintain vacuum. When used with a suitable roughing pump, turbo 

pumps can operate from atmospheric pressure down to very low pressures such 

as 10-8 Torr. On the other hand, there are some disadvantages: if the power fails, 

it will vent the system to air. In addition, moving parts wear out over time and can 

be damaged by debris impacting the blades.   

For this test stand, the VARIAN Turbo-V 301-AG turbomolecular pump 

shown in Figure 10 is used for initial pump down from atmospheric pressure. It is 

a user friendly, computer-based pump, which has a long lifetime and 

instantaneous start-up. While the vacuum inside the vacuum chamber in the test 

stand reaches about 10-6 Torr in the first five minutes, it takes almost four days to 

reach 10-7 Torr.   
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Figure 10. VARIAN Turbo-V 301-AG turbo pump connected to the test stand  

3. Ion Pump 

Ion pumps are another option for pumping systems to very low pressures 

such as 10 orders of magnitude smaller than atmospheric pressure. When gas 

molecules enter the ion pump, the pump ionizes and accelerates them with 

voltages of typically 3 kV to 7 kV, and traps them using a magnetic field 

perpendicular to the electric field. The ions impact titanium plates, where they are 

trapped by chemical reactions or are physically buried in the plates, depending 

on the gas species. 

The VARIAN Star-Cell ion pump and power supply used in this test stand 

are shown in Figure 11. This pump provides a measured base pressure of 10-8 

Torr. When pumping down, the vacuum inside the test stand reaches about 10-6 

Torr in the first five minutes by using turbomolecular pump, with the ion pump 

bringing down the pressure to 10-8 Torr in about three minutes. It keeps this 

pressure as long as it stays on. 
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Figure 11. VARIAN Star Cell ion pump (left) and its power supply (right)  
used in the test stand  

4. Ion Gauge 

Both the turbo pump (located approximately one meter away from the 

flashboard chamber) and the ion pump (located right before the flashboard 

chamber entrance) measure the pressure inside their own chambers. In order to 

sort between these two different measurements at different locations in the 

pumping system, an ion gauge, which is even closer to the flashboard, is used to 

take alternative vacuum pressure measurements for comparison. 

The whole structure of the VARIAN ion gauge with the control unit is 

shown in Figure 12. Thermionic emission generates electrons from the filament, 

which bombards the gas inside the tube, causing ion generation. These ions are 

collected by the thin wire at the center of the wire cage in Figure 12, causing a 

current, which depends on the pressure inside the vacuum chamber. The 

measured pressure is typically an order of magnitude greater than the pressure 

measured by the ion pump itself. 
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Figure 12. Operation of VARIAN ion gauge inside the vacuum tube  
in the test stand (left),  ion gauge power unit (top right),  

the whole structure of the ion gauge (bottom right)   

C. PULSER DESIGN 

1. Pulsed-Power Supply Requirements 

In order to produce a discharge to activate the FBPC, this test stand 

needs to produce a high enough voltage to break down the FBPC gap. Once this 

has happened and plasma has been produced, high voltage is no longer needed; 

but enough current is still required to sustain the discharge for long enough to 

produce the plasma. Putting too much energy into the plasma will heat it, and 

possibly increase its expansion velocity, which may increase the emittance of a 

beam that the FBPC would produce. Initially, the voltage, current, and pulse 

length that the system required were unknown. In addition, this test stand is 

limited to 5 kV and no beam extraction because of the radiation safety limitations 

under which this test stand is currently operating.         

The pulser built for initial operation of this test stand consists of an LRC 

circuit switched by a Silicon-Controlled Rectifier (SCR) generating a voltage 

applied across a step-up transformer. 

Since the pulsed-power supply provides a single short pulse, it provides 

the opportunity, when used with fast diagnostics, to study the details of the 
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system’s operation on a relatively fast timescale. A DC source or a CW source 

providing many continuous pulses at the same level would not provide the same 

ability to understand what is happening.        

2. Pulser Physical Design 

A circuit diagram of the pulser is provided in Figure 13. 

 

Figure 13. Circuit diagram of the pulser used in the test stand 

The load shown in Figure 13 is a resistor, but could either the FBPC spark 

gap or other loads used for testing. The pulser designed for the present 

experimental work and the charging voltage meter are shown in  

Figure 14. 
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Figure 14. Physical design of the pulser 

In order to obtain a maximum 5 kV output voltage, the pulser uses a 

capacitor, which has a nominal capacitance of 2.0 µF and a measured 

capacitance of 2.17 µF, and that can be charged up to 1.2 kV (limited by the 

SCR). A 40TPS12 model SCR was used in the pulser. SCRs are designed for 

medium power switching and phase control applications. When the gate-cathode 

voltage exceeds a certain threshold value (1.45 V for this SCR), the SCR turns 

on and conducts current. Triggering, in other words “switching,” is a one-time 

process with a certain switching speed; the switching speed for this SCR is 1000 

V/µs and 100 A/µs. A pushbutton switch (MPS 103F ALCO), shown in Figure 15, 

was used for triggering the SCR. It is housed in a small box containing a simple 

circuit hosting a 9.0 V industrial battery that provides enough voltage turn on the 

SCR.   
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Figure 15. Pushbutton switch box (left) and MPS 103F ALCO fast-closing 
switch (right) used for triggering the SCR 

D. VOLTAGE-CURRENT MONITOR BOX 

Measuring the voltage and the current across the flashboard during 

operation provides a measure of the power that the pulser puts into the plasma. 

Therefore, the voltage-current monitor box takes power measurements at any 

time during the ‘on-period’ of the pulser. Its photograph and location in the test 

stand diagram are shown in Figure 16.  

As illustrated in Figure 16, voltage-current monitoring occurs in a metal 

box with two Bergoz fast current transformers (FCTs). These are passive devices 

optimized for non-contact measurements of fast current pulses, with rise times  

faster than 1 ns and a sensitivity of 1.25 V/A. Inside the FCT, there are wire turns 

around an alloy core, and a 50Ω load. When non-contact primary current passes 

through the center of the FCT core, a proportional signal is generated and can be 

viewed on an oscilloscope [36]. In this test stand, one of the FCTs measures the 

current flowing through the FBPC, while the other measures the voltage across a 

grounded resistor that is parallel to the flashboard and therefore gives the same 

voltage applied across the flashboard during the pulse. 

    



 25

 

Figure 16. Voltage-current monitor box (bottom) and its location in the test 
stand simplified diagram (top) 

E. FLASHBOARD DESIGN 

In general, a flashboard consists of both dielectric material and conductive 

electrodes. Virtually any dielectric or conductor can be made into a simple 
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flashboard, although the choice of materials will influence the lifetime and 

operating properties of the flashboard, and the nature of the contamination it 

produces.  

This design used PVC as the dielectric surface and aluminum tape as the 

conductor, both of which are inexpensive and easy to handle, and can be easily 

found in the market.  

After deciding on the materials, this work aimed to find an acceptable 

design for the surrogate flashboard that operates, in other words, can be broken 

down by the applied high voltage pulse, under almost every pressure from 

atmosphere to very low pressures such as 10-8 Torr or 10-9 Torr. For simplicity of 

initial testing, a single gap was used rather than the array of gaps normally used, 

as shown in Figure 7.   

The first flashboard design consisted of a dielectric material and 

electrodes, which are in contact with the dielectric material. There was a space 

between these electrodes of approximately a few tenths of a millimeter, in order 

to form a spark gap. To provide a field enhancement to assist the breakdown 

process, the inner edges of the electrodes facing each other are pointed. In 

addition to assisting the breakdown process, this should help localize the 

discharge to the same point during every shot. Figure 17 illustrates the final 

drawing of the first design.     

 

Figure 17. The first surrogate flashboard design 

The first design was prone to damage because of the difficulty in making 

the cross cut at the center of the electrodes without removing too much material 
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from the dielectric. This knife-cut style made the spark gap too big so that larger 

voltages were required, and any damage to this area caused the FBPC not to 

break down at voltages less than about 1 kV pulser charging voltage.  

A second surrogate flashboard was designed, in which the electrodes 

were changed as illustrated in Figure 18. This design only requires one straight 

cut, which is easier to make while keeping the gap small and the edges sharp. 

 

Figure 18. The second surrogate flashboard design 

This provided a gap of a few tenths of a millimeter, which fixed the prior 

problem and allowed the spark gap to break down with low charging voltages of 

160–170 V. 

During the first high voltage operation of the surrogate flashboard in 

Figure 18, a short occurred between the electrode rods and the vacuum 

chamber. After insulating the rods with tygon tubing as shown in Figure 19, this 

problem was solved and the surrogate flashboard discharged as expected. 

Note that brass rods were used in the current transmission system in the 

vacuum chamber although using brass in a high vacuum system is generally not 

recommended due to its high vapor pressure. Its use was acceptable in this 

system because while ultra-high vacuum (< 10-9 Torr) was not required, brass is 

strong enough to keep the flashboard straight without deflection and is easily 

shaped.   
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Figure 19. Full structure of flashboard design (left) and physical version in 
vacuum chamber (right)    

F. LANGMUIR PROBE DESIGN 

1. What Does a Langmuir Probe Do? 

A Langmuir Probe is composed of an exposed conductor, like a wire, 

immersed within the plasma and is used to diagnose the properties of the plasma 

such as plasma potential, electron density, ion density, electron temperature, and 

plasma velocity. While Langmuir probe techniques can be very sophisticated, in 

the initial experiments reported here, these probes were used as simple 

indicators of the presence or absence of plasma. 

Because of the design of this test stand, there is nothing constraining the 

plasma to be stationary. Instead, plasma generated during FBPC operation will 

move away from the flashboard, with typical expansion speeds reported in the 

literature ranging from 1 to 30 cm/µs [8], [19], [22]-[28], [30], [35]. Because of 

this, the Langmuir probe in this experiment can be used for answering questions 

such as: Is the plasma there or not? What is the time of plasma arrival? What is 

the net charge of the particles in the plasma (as shown by positive or negative 

scope traces)? What is the energy of the particles in the plasma (by taking 
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biased probe measurements)? Finding answers to these questions will provide a 

better understanding of the plasma movement and may lead to methods to 

mitigate the effects of emission surface motion on the extracted electron beam 

properties.   

2. Initial Langmuir Probe 

The initial Langmuir probe had two conductors, consisting of copper wires. 

These wires were insulated except at the tips, while the other ends of the wires 

were connected to the feedthrough pins at the flange. Two wires were used in an 

attempt to measure conduction through the plasma. However, while they did not 

seem to measure any conduction, they did give some idea about the arrival time 

of the pulsed plasma when connected to the scope. A picture of the first 

Langmuir probe is shown in Figure 20. In order to provide sufficient mechanical 

rigidity, wire ties were used to keep the two wires together; however, this 

Langmuir probe still had insufficient mechanical rigidity.  

 

 

Figure 20. A Picture of FBPC and first Langmuir probe used in the test stand 
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3. Improved Langmuir Probe 

An improved probe was designed from scratch, and is shown in Figure 21. 

The new probe is a rigid 12 inch-long brass rod, 2 mm in diameter. An acorn nut 

is used to make the surface area of the tip larger than the previous one (enlarged 

from 1 mm to 5 mm in diameter) to sample more of the plasma. The outer 

surface of the probe must be insulated so that only plasma striking the tip will 

create a signal. In order to insulate the probe, tygon tubing was used as seen in 

Figure 21 (yellow insulator around the probe). 

 

Figure 21. New design of the Langmuir Probe 

4. Linear Motion of the Langmuir Probe 

The Langmuir probe in this test stand is not a fixed probe, but it moves 

back and forth by means of the linear shift, a picture of which is shown in  

Figure 22.  
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Figure 22. Linear shift used in the test stand (From [37]) 

The Langmuir Probe is connected directly to the linear shift so that the 

distance between the flashboard and the probe can be adjustable. It is also 

possible to take exact measurements of Langmuir probe distance from the 

flashboard in the vacuum chamber by mounting a precision dial gauge. A final 

structure of the linear shift with the dial gauge is shown in Figure 23.  

 

 

Figure 23. Linear shift with the dial gauge  
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G. DESIGN OF MESH GRID: “ION STOPPER” 

1. Overall Design of Ion Stopper 

In order to distinguish between electron and positive ion currents in the 

Langmuir probe signals, a mesh grid with a long cylinder metal sheet of 1 mm 

thickness, called an “ion stopper” was built as seen in Figure 24.  

 

 

Figure 24. A detailed picture of the “ion stopper” 

The main idea behind this design is to set up an electric field between the 

grid and the Langmuir probe to help control what type of particles are able to 

reach the probe. This operation occurs when the copper mesh grid is connected 

to the base flange with the help of a metal sheet that, at the same time, covers 

the Langmuir probe and grounds the grid. There is no electrical contact between 

the ion stopper and the Langmuir probe. The evolution of the ion stopper around 

the Langmuir probe is pictured in Figure 25. 
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Figure 25. A picture of the ion stopper with the Langmuir probe  
inside the ion stopper   

2. Ion Stopper Relationship with the Langmuir Probe 

The ion stopper is mounted around the Langmuir Probe as in Figure 25. 

There is no physical connection between the Langmuir Probe and the ion stopper 

structure. Figure 26 explicitly illustrates the connections of the different parts on 

the same diagram.   

 

Figure 26. Structural relationship between Ion Stopper and Langmuir probe 
inside the vacuum chamber  
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In Figure 26, an external DC voltage (up to 5 kV) is applied to the probe 

through an inductor, which behaves as a short under DC currents. Since the 

mesh grid attached to the cylinder sheet metal is grounded, an electric field 

occurs between the mesh grid and the tip of the Langmuir probe. However, the 

electric field is still zero in front of the flashboard. The electric field between the 

mesh and the probe can be tuned by changing the DC voltage, and acts as a 

separator that separates electrons from the other charged particles so that the 

electron and positive ion components of the plasma can be investigated clearly. 

On the other hand, the capacitor in Figure 26 works as an isolator. While it allows 

the pulsed signal to pass from the Langmuir probe to the oscilloscope, it also 

protects the oscilloscope from DC voltage by behaving as an open at DC. 

H. OVERALL DESIGN OF THE FBPC TEST STAND 

The final design of the test stand is pictured in Figure 27. This picture is 

consistent with the entire diagram shown in Figure 9.  

 

 

Figure 27. Final design of the FBPC test stand 
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III. EXPERIMENTAL OPERATION AND DATA ANALYSIS 

A. PULSER OPERATION 

1. Capacitor Charging 

Figure 28 shows the pulser as configured for testing. At the heart of this 

system is the main energy storage capacitor. Before the test stand can operate, 

this capacitor must be charged to the desired operating voltage. This is 

accomplished by an external Hewlett-Packard HARRISON 6515A DC power 

supply (0-1600 V) connected to the capacitor through a 1.0 MΩ resistor, which 

protects the power supply from excessive current during pulser operation. The 

maximum operational charging voltage is 1.2 kV, which is set by the voltage 

rating of the SCR. In normal operation, the charging voltage is monitored using a 

resistive voltage divider consisting of a 1.0 MΩ resistor and a 10.0 MΩ resistor in 

series (actual values 1.0 MΩ and 9.9 MΩ), with voltage read across the smaller 

resistor using a Fluke multimeter.  

 

Figure 28. RLC circuit diagram inside the pulser. Location of Bergoz coils are 
indicated by “BZ”  
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Figure 29 shows calibration data comparing the voltage across the smaller 

resistor to the voltage measured directly across the capacitor terminals using a 

second Fluke multimeter. The voltage divider response is very linear, and well 

approximated by the theoretical voltage division ratio based on the resistors’ 

nominal values.  

 

Figure 29. Charging Voltage Monitor Accuracy    

2. Capacitor Discharging  

After the capacitor is charged, the pulser may be activated by depressing 

the firing button, which triggers the SCR. The capacitor then discharges through 

the SCR, producing a current Ip in the primary winding of the transformer, and a 

current Is through the secondary winding and load if a load is attached. 

After the SCR begins to conduct, the pulser can be modeled with a simple 

RLC circuit, as shown in Figure 30.      
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Figure 30. Simple RLC circuit model for theory 

The current i flowing in this circuit is governed by the differential equation 

2
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where R, L and C are the measured values from the actual circuit, as shown in 

Figure 30.  Because of these values, the circuit will be under-damped, and the 

solution to Equation 1 is 
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After applying the initial condition  0 0i t  
 

to this equation, one of the 

constants is found: 0 .A
 
As a result, Equation 2 becomes
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As soon as the switch closes, since the initial current is zero, the voltage drop 

across the resistor will also be zero. So the charging voltage Vch on the capacitor 

must equal the voltage across the inductor, so 
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From Equation 4, 
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is obtained. After the initial condition in Equation 5 is applied for t, the constant 

becomes chB CV   . Therefore,  

   2 sin                          (7)
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Equation 7 describes the primary side of the circuit, without any load 

connected across the secondary. Figure 31 shows a comparison between the 

theoretical current predicted by Equation 7 and the experimental current initially 

measured at a low charging voltage, and without any load connected to the 

pulser. 

 

Figure 31. Pulser operation in low voltage in terms of the primary current 
without any load connected to the pulser  

The experimental data was collected by use of the Bergoz coil, mounted 

into the primary side of the transformer, as shown in Figure 29. 
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Figure 32 shows the pulser primary and secondary currents when  

a load was connected to the secondary side.  

 

Figure 32. Pulser operation in low voltage in terms of primary current with load 
connected to the pulser 

While the pulser was no longer the simple RLC circuit shown in Figure 30, 

the primary current was relatively unchanged from the prediction of Equation 7. 

Figure 32 also shows the current  through the secondary, measured with a 

Bergoz FCT. In this case, a 35 Ω load was connected in parallel with the 

secondary. The Bergoz coil was being used to measure the current through that 

resistor – effectively giving a measure of the voltage applied across the 

secondary, which in turn will be proportional to the voltage across the primary, 

which in turn should be proportional to the derivative with respect to time of the 

current through the primary. Figure 32 shows that this is the case.  
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3. Operation at Higher Charging Voltage 

At very low charging voltages, the primary current measured by the 

Bergoz coil agreed very well with the theoretical prediction for a simple RLC 

circuit. However, as the charging voltage was increased, the measured primary 

current no longer agreed with the theory. Figure 33 illustrates how the measured 

primary current distorts when the charging voltage is increased up to 40 V, near 

the onset of this effect. 

 

 

Figure 33. Measured current when charging voltage is 40 Volts without any 
load connected to the pulser 

The primary current trace in Figure 33 and in Figure 34 follows the theory 

curve up to almost 7.0 A. However, it peaks at a slightly lower value than the 

theory curve predicts, and drops down to 0 A earlier than expected from the 

theory. 
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Figure 34. Measured currents when charging voltage is 40 Volts with load 
connected to the pulser 

 

Figure 35. Measured current when charging voltage is 100 Volts without any 
load connected to the pulser    
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In Figure 35, as the charging voltage was increased up to 100 V, the effect 

becomes more noticeable. Figure 36 illustrates operation at the same charging 

voltage, but with a load connected to the pulser.   

 

 

Figure 36. Measured currents when charging voltage is 100 Volts with load 
connected to the pulser       

To sum up, at 20 V in Figure 31 and Figure 32, the effect starts at the end 

of the pulse. As the voltage is increased, the effect occurs before the pulse 

reaches its theoretical peak value, so most of the pulse is “chopped off” and 

thrown away, and just a little bit of the pulse from the leading edge of the 

theoretical pulse is seen as shown in Figure 35 and Figure 36. Notice that the 

shape of the measured secondary current traces seems unchanged.  

As the charging voltage increased, the area under the first part of the 

primary current curve appeared to be constant after a certain point. This is similar 

to behavior seen in pulsed power systems when a pulse transformer’s  

“volt-second” product is exceeded and it goes into saturation. Ferromagnetic core 
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materials cannot provide infinite magnetic flux densities, and when the applied 

current through the primary side exceeds the point at which all the magnetic 

domains in the core align, the transformer saturates. When this happens, the 

relative permeability of the core approaches unity, drastically reducing the 

transformer inductances, and partially decoupling the primary and secondary 

circuits. Thus, energy transfer from the primary side to the secondary side 

essentially stops. Saturation is generally an undesirable effect in transformers.      

 

 

Figure 37. Measured currents under applied high voltage 

Figure 37 shows a series of measured primary currents for applied high 

voltages along with a table listing the charging voltages and corresponding areas 

under the first part of the current traces. Integration was performed with the 

“trapezoidal” integration rule using the MATLAB function, . As 

seen in Figure 37, as the applied charging voltage is increased beyond about 

500 V, the area under the curves does not change, which supports the 

hypothesis of a transformer saturation effect in the pulser. 
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4. Mitigation Strategies for the Saturation Effect 

Saturation of the transformer core inside the pulser was initially thought to 

be the cause of the distorted current traces during pulser operation at higher 

charging voltages. Since the transformer consists of a ferrite core, resetting the 

core could solve the problem. Core reset is a process in which a DC current is 

applied to the core material in order to mitigate the saturation effect. Various 

currents in ranging from 0.5 A to 11.5 A were applied to the transformer core; 

however, no change in scope current trace was observed. 

Another hypothesis was that the Bergoz coil, which also contains 

magnetic core material and measures the primary current, could be the device 

saturating. To test this hypothesis, a Pearson coil, which is 12.5 times less 

sensitive (0.1 V/A) than the Bergoz coil (1.25 V/A), was used with the Bergoz coil 

at the same time in the pulser in order to compare both scope traces.  

Figure 38 and Figure 39 demonstrate the primary current measured with 

the Pearson and Bergoz current transformers, showing good agreement between 

the Pearson measurement and the theoretical prediction, and saturation only 

occurring in the Bergoz trace. Therefore, it was the Bergoz coil’s core, not the 

main transformer core, which was saturating. 

 

Figure 38. Bergoz coil and Pearson coil scope traces under 40 V  
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Figure 39. Bergoz coil and Pearson coil scope traces under 100 V  

B. VOLTAGE-CURRENT MONITOR  

1. General Operation and Design Modifications 

The Voltage-Current (V-I) Monitor Box is used for analyzing either loads 

connected directly to the pulser or a FBPC located inside the vacuum chamber, 

and provides a flexible tool for measuring the power that the pulser conveys to 

the FBPC. Because of the location of the FBPC inside the vacuum chamber, the 

V-I Monitor Box puts the diagnostics as close to the FBPC as possible while still 

allowing replacement of parts such as resistor loads and Bergoz coils without any 

interruption of the FBPC operation in the vacuum. 

Figure 40 illustrates the V-I Monitor Box circuit diagram inside the red 

border. The transformer before the V-I Monitor Box is the last element of the 

pulser. The pulser is connected to the box directly by coaxial cable. The box is 

connected to the FBPC inside the vacuum chamber. The secondary side current 

of the transformer as drawn in Figure 40 occurs when only the load is connected 
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to the pulser, while the secondary current is shared between the load and the 

spark gap when the FBPC is connected to the box. 

 

Figure 40. V-I Monitor Box circuit diagram (inside the red border). Location of 
Bergoz (BZ) and Pearson (P) current monitors shown.  

Instead of Pearson coils (Model No: 110 and 411, output volts per amp: 

0.1) as drawn in Figure 40, Bergoz coils were originally used for Ip and Ifb 

(flashboard current) measurements before the saturation effect was understood. 

The Bergoz coil used to monitor Vfb (flashboard voltage) was retained, with the 

load resistance increased to prevent it from going into saturation.    

2. Voltage and Current Monitoring 

Voltage and current monitoring is the main function of the V-I Monitor Box. 

The first idea behind this design is to measure voltage by using a current monitor 

across the load, which has the same voltage applied to it as the FBPC since they 

are in parallel. The second idea is to measure the current through the FBPC by 

using another current monitor in series with it as shown in Figure 40. To verify 

the proper operation of the V-I Monitor Box, one test is to operate it under “open 

circuit” conditions, without a FBPC attached.  
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Figure 41. Measured currents with a simple 28 kΩ load in V-I Monitor Box, and 
with 100 V pulser operation voltage (no FBPC in this part of the experiment) 

 

Figure 42. Measured currents with a simple 28 kΩ load in V-I Monitor Box, and 
with 300 V pulser operation voltage (no FBPC in this part of the experiment) 

Figure 41 and Figure 42 represent experimental results of the V-I Monitor 

Box and the pulser current measurements under low and high charging voltages 

with a 28 kΩ load, connected to the secondary side of the transformer. 
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C. FLASHBOARD BREAKDOWN AND PLASMA GENERATION 

1. Flashboard Breakdown 

With the pulser assembled and connected to the surrogate flashboard 

through the V-I Monitor Box, the system is ready to generate plasma. The 

capacitor is charged, and then discharged on command through the SCR, 

providing a pulse to the primary side of the transformer, which steps up the 

voltage by a factor of four and steps down the current by a factor of four in 

preparation for being sent to the flashboard. At this point, the only visual 

indication that the system has fired is a bright spark over the gap between the 

electrodes on the flashboard. The brightness of the spark changes in proportion 

to the pulser charging voltage.  

The breakdown process is very complicated and there are competing 

theories to explain it. One widely held theory is the secondary electron emission 

avalanche model, in which applied high voltage leads to a prebreakdown 

avalanche of secondary emission electrons across the dielectric surface. This 

causes electron-stimulated desorption of gas from the surface, and that gas is 

then ionized by the electron avalanche to form the surface flashover plasma [38].  

For the purposes of this research, the real question at this stage should 

be: “What is happening electrically right at the time of breakdown of the 

flashboard?” In order to understand this, understanding the voltage and current 

behavior during the breakdown is significant, and may lead to a better 

understanding of the relationship between the power applied to the plasma and 

its properties, like expansion speed, that affect emittance.  

In order to break down the FBPC, pulser charging voltage was fixed to 

500 V. Figure 43 shows the behavior of measured currents in the pulser and in 

the V-I monitor box before the FBPC was attached. 
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Figure 43. Measured currents under applied 500 V operational pulser voltage 
before the FBPC is attached to the circuit 

After the FBPC is attached to the circuit, red scope trace in Figure 44 

illustrates the FBPC current trace measured with the Pearson coil in series with 

the FBPC. 

 

Figure 44. Measured currents under applied 500 V operational pulser voltage 
after the FBPC is attached to the circuit 
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Figure 45. FBPC voltage trace (pink), current trace (yellow), 10x reduced 
pulser primary current trace (violet) under applied 500 V charging voltage 

In Figure 45, while the pink trace represents the FBPC voltage trace, as 

determined from the Bergoz coil measurement across the load, the yellow trace 

is the FBPC current trace, measured with the Pearson coil in series with the 

flashboard as shown in Figure 40. Figure 46 is a detail of the first 500 ns period 

of the breakdown process; notice that the vertical scale has changed. Also note 

the current and voltage oscillations that precede the main breakdown and FBPC 

current pulse.  
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Figure 46. First 500 ns period of the break-down process shown by FBPC 
voltage trace (pink), current trace (yellow),  

pulser operational current trace (violet)  
under applied 500 V charging voltage 

 2. Plasma Generation 

Plasma generation occurs after the flashboard breaks down under the 

applied high voltage. In this experiment, the first two goals are to verify that 

plasma is present, and then to determine how it moves. In this test stand, the 

plasma cannot be seen by the naked eye as it moves away from the discharge 

site. Instead, a Langmuir probe can be used as a movable charge collector to 

verify the plasma’s presence and to analyze its motion. 
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Figure 47. Plasma recognition by using Langmuir probe inside the vacuum 
chamber after flashboard breaks down     

Figure 47 demonstrates how a Langmuir probe is used in order to 

recognize plasma that exists after the flashboard breaks down. The Langmuir 

probe is immersed in the region of expected plasma at a distance of one or two 

inches away from the flashboard. When the plasma reaches the probe tip, 

charge is deposited on the tip, generating a current through the resistor shown in 

Figure 26, which is detected as a current on the oscilloscope. 

3. Use of Langmuir Probe and Time Delay  

The movement of plasma in a vacuum chamber can also be studied 

experimentally by using this test stand. Since the plasma expands after it is 

generated, the Langmuir probe can be used to measure the time delay between 

when the plasma is formed and when it reaches the probe at some known 

distance from the flashboard. This time of flight measurement would give an 

estimate for the plasma expansion velocity. However, it would only give that 

velocity averaged over a specific distance, and would require careful calibration 

of the experiment (for example, cable delays), to prevent the introduction of 

errors. Instead, a movable probe is used, and the change in arrival time of the 

plasma is investigated as the probe’s location is changed. Figure 48 illustrates 

how the probe can be used in this way. When the probe is moved by a distance 

Δx, the arrival time of the plasma is delayed by a time Δt. Repeating this 
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measurement at different locations builds up a curve, and the slope of that curve 

gives a measurement of the plasma’s instantaneous velocity as a function of 

distance away from the FBPC. In principle, this measurement is self-calibrating – 

as long as the pulser and flashboard behave exactly the same on each shot. 

There is no need to know exactly when the flashboard breaks down. However, it 

does require many shots, and shot-to-shot variations in flashboard and pulser 

operation are an important source of error in this technique.  

 

Figure 48. One way of using the Langmuir probe to measure plasma velocity 
(From [13]) 

Figure 48 simplifies the idea of understanding the plasma movement. 

However, it is not as simple as seen in Figure 48 since the shape of the plasma 

signal on the probe is not a smooth line as shown there. Instead, the plasma 

signal oscillates and dies down while time passes. Thus, it is sometimes hard to 

choose a single point along the pulse that clearly defines the arrival of plasma at 
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the probe. Second, the time of plasma formation is unknown. Therefore, a 

starting point or reference time must be defined to measure the time when 

plasma reaches the Langmuir probe. This reference time is the point on the 

FBPC current signal where this signal begins to appear as shown in Figure 49.  

 

 

 Figure 49. Typical measurement of pulse arrival time to the Langmuir probe 

Figure 49 demonstrates a typical measurement made with the new 

Langmuir probe design shown in Figure 25. In this case, the pulser charging 

voltage is equal to 500 V and the Langmuir probe is one inch away from the 

flashboard. To measure the time delay of plasma movement in the vacuum gap, 

the time difference between the beginning of the current signal measured using 

the V-I Monitor Box and the highest point of the probe signal (pink trace) are 

used as shown in Figure 49. This is repeated four times at the first probe 

position, and then the probe is moved to a new location and the measurements 

repeated. 

The Langmuir probe distance versus time delay data based on this 

measurement method is plotted in Figure 50, again for a 500 V charging voltage. 
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A linear fit to the data from the first shot in each location is also shown. The 

inverse of the slope of this line gives the instantaneous velocity, which is 

approximately 2.13 cm/µs under the applied 500 V charging voltage. The good 

agreement with a linear fit indicates that the plasma is expanding ballistically, 

without accelerating or decelerating, as expected.   

  

 

Figure 50. Time delay of Plasma 

Three scope traces shown in Figure 51 demonstrate how the plasma 

signal (pink trace) is affected in amplitude and delay time when the distance of 

the probe from the FBPC changes; note the change in vertical scale of the pink 

trace. 
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Figure 51. Distance effect on the plasma time delay.  
The pink trace is the Langmuir probe plasma signal,  

the yellow trace is the current of the FBPC, and  
the violet trace is the 10x reduced primary current. 
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IV. CONCLUSION AND FUTURE WORK 

A. SUMMARY 

With examination and experimentation, unique ideas may prove that 

everything can exist in our real world. Reaching for a yet unknown phenomenon 

occurs when the thinking process begins. Thinking of how to find something that 

may be imagined, but is not yet known, was the first step of this research.  The 

process involved thinking about the idea, reinforced by reading, and further 

learning. Then, the sharing of ideas and thoughts further increased the 

knowledge. Finally, enthusiasm enabled the building of the FBPC test stand and 

the running of experiments with the goal of benefit for today’s and future 

militaries. 

This project has focused on building a test stand to understand how 

flashboards operate and to see what can be discovered by experimenting with 

FBPC operation, with the goal of improving them for use in HPMWs.  

First, flashboard operation was investigated by designing and building a 

surrogate flashboard with only one pair of electrodes to simulate an actual 

flashboard with an array of electrodes. This design facilitated the work and 

illustrated, in detail, the process of how a real flashboard operates. Designing this 

flashboard was straightforward and inexpensive because it requires simple 

dielectric and conducting materials such as aluminum and plastic. In addition to 

that, it is a simple, rugged design. During all experimental operations, the 

surrogate flashboard worked without need for any replacement. No 

contamination of cathode material was detected at all. 

Second, one of the major requirements of an FBPC test stand was a 

pulsed power system. In order to achieve this, a pulser that generates a single 

pulse with a pulse length of approximately 20 μs, enough to break down the 

flashboard, was built. Shorter pulses helped in understanding the operation of the 

flashboard on nanosecond scales.  
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Third, a Langmuir probe, just a wire in its simplest design, was used to 

good effect in the test stand. It helped in collecting data about the plasma 

formation after the flashboard breaks down, as well as the plasma movement 

through the vacuum gap by taking measurements at different distances from the 

flashboard.  

Fourth, provision was made for the selective measurement of electrons 

and positive ions in the flashboard plasma. This was achieved by using a grid 

mechanism, called the “ion stopper” and different power supplies in the test 

stand. The grid mechanism generates an electric field in the area between the 

Langmuir probe and the grid, allowing either the positive particles or the negative 

particles in the plasma to be selected depending on the bias voltage applied to 

the Langmuir probe.  

Fifth, vacuum systems are another aspect of the FBPC test stand. The 

operation of the test stand does not require an ideal vacuum; however, it needs 

to run under vacuum in order to mitigate air ionization by the high voltage pulse, 

and to allow free motion of the plasma. This FBPC test stand has run at modest 

vacuum levels such as 10-7 Torr. This level of vacuum pressure was reached by 

using a turbomolecular pump and an ion pump.               

B. FUTURE WORK 

Suggested future tests to be conducted and improvements to be added to 

the current FBPC test stand include:  

 A new pulser generating shorter pulses may increase the 

effectiveness of the test stand. 

 Designing different flashboards and trying different electrode 

configurations may provide better understanding of the breakdown 

process. 
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 Adding an anode plate as shown in Figure 52 should be tested 

without using an “ion stopper grid” and the results should be 

compared to the ones acquired by using the ion stopper. This 

anode plate may well decouple the plasma generation process from 

the pulse formation. 

 

 

Figure 52. Future design of FBPC with anode grid  

 Using multiple Langmuir probes as illustrated in Figure 53. Taking 

measurements at the same time from different locations can result 

in much more valuable data about the shape and the content of the 

plasma and the pulsed electron beam. 
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Figure 53. Prospective use of multiple Langmuir probes in future experiments 
(From [13]) 

 This test stand has been designed to operate under a maximum 1.2 

kV DC source and generates a maximum 5 kV potential. Higher 

voltages than these maximum levels may improve the effectiveness 

of the test stand, and should be tested. A new pulser will be 

required for this operation.  
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